Relative class number of imaginary Abelian fields of prime conductor below 10000
نویسنده
چکیده
In this paper we compute the relative class number of all imaginary Abelian fields of prime conductor below 10000. Our approach is based on a novel multiple evaluation technique, and, assuming the ERH, it has a running time of O(p2 log(p) log log(p)), where p is the conductor of the field.
منابع مشابه
Class Numbers of Imaginary Abelian Number Fields
Let N be an imaginary abelian number field. We know that hN , the relative class number of N , goes to infinity as fN , the conductor of N , approaches infinity, so that there are only finitely many imaginary abelian number fields with given relative class number. First of all, we have found all imaginary abelian number fields with relative class number one: there are exactly 302 such fields. I...
متن کاملThe Determination of the Imaginary Abelian Number Fields with Class Number One
In this paper, we determine all the imaginary abelian number fields with class number one. There exist exactly 172 imaginary abelian number fields with class number one. The maximal conductor of these fields is 10921 = 67 • 163 , which is the conductor of the biquadratic number field Q(\/-67, v'—163).
متن کاملOn the computation of class numbers of real abelian fields
In this paper we give a procedure to search for prime divisors of class numbers of real abelian fields and present a table of odd primes < 10000 not dividing the degree that divide the class numbers of fields of conductor ≤ 2000. Cohen–Lenstra heuristics allow us to conjecture that no larger prime divisors should exist. Previous computations have been largely limited to prime power conductors.
متن کاملOn Cm Abelian Varieties over Imaginary Quadratic Fields
In this paper, we associate canonically to every imaginary quadratic field K = Q(√−D) one or two isogenous classes of CM (complex multiplication) abelian varieties over K, depending on whether D is odd or even (D 6= 4). These abelian varieties are characterized as of smallest dimension and smallest conductor, and such that the abelian varieties themselves descend to Q. When D is odd or divisibl...
متن کاملOn Z p - embeddability of cyclic p - class fields ∗
It is investigated when a cyclic p-class field of an imaginary quadratic number field can be embedded in an infinite pro-cyclic p-extension. Résumé. On donne des conditions pour qu’un p-corps de classes cyclique d’un corps de nombres quadratique imaginaire soit plongeable dans une p-extension pro-cyclique infinie. Consider an imaginary quadratic number field K. Let p be an odd prime number, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999